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Heavy quarkonium as probe for QGP

Heavy quarkonium is an important probe of the properties of a
quark-gluon plasma [T. Matsui, H. Satz (1986)].

In heavy ion collisions → short lived quark-gluon plasma.

In the primary collisions heavy quarkonium is created.

Depending on the plasma temperature it decays (to muons for
instance).

Muon escape ↔ carry information out of the interior of the
plasma.

The frequency of the emitted muons is measured.
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Different methods

Despite asymptotic freedom at the temperature of interest, the
theoretical determination of the properties of heavy quarkonium is
not more tractable than at T = 0.

Many different approaches:

1 Potential models

2 Perturbation theory

3 Lattice QCD

4 AdS/QCD

In this talk: What can we get from first principles?
→ Perturbation theory and comparison to lattice results.
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Effective field theory: T = 0 case first

Starting form the QCD Lagrangian, we separate the light quarks
(u,d,s) from the heavy quark (c):

LQCD = Lgluons + Llight quarks + Lheavy quark,

Lgluons =
1

4
Fµν aF a

µν ,

Llight quarks = ψ̄i(iγ
µDµ)ψi ,

Lheavy quark = Ψ̄(iγµDµ −M)Ψ.

We want to built an effective description for the bound state of
two heavy quarks.

Heavy quarks have a small binding energy Eb ≪ M.

⇒ We have the following hierarchy of scales:

M ≫ p ∼ Mv ∼ 1/rb ≫ Eb ∼ Mv2

⇒ The velocities v of the heavy quarks are small.

⇒ Use the Non-Relativistic QCD for the heavy quarks.
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NRQCD

NRQCD is an effective low energy E ∼ Mv description for the
heavy quark

Relativistic spinors are decomposed in non-relativistic
components Ψ =

(

φ
χ

)

.

The Lagrangian of NRQCD reads

LNRQCD
heavy quark = φ†(iD0 +

D2

2M
)φ+ χ†(iD0 −

D2

2M
)χ+O

(

1

M2

)

In NRQCD terms are arranged in inverse powers of M.

It can be obtained from QCD by a Foldy-Wouthuysen
transformation.

With NRQCD we integrated the hard scale M, but we can do
better:
⇒ Integrate the soft scale p ∼ Mv ∼ 1/rb. ⇒ New effective field
theory: potential NRQCD.
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pNRQCD, Definition

pNRQCD is an effective ultra low energy E ∼ Mv2 description for
a heavy quark-antiquark bound state.

The bound state is represented by a wave function ψ(x1, x2, t).

Coordinates → relative and CM coordinate x = x1 − x2 and
X = 1

2
(x1 + x2).

The electric and magnetic fields are multipole expanded
around the CM coordinate.

The color structure of ψ is best split in singlet S and octet O
part.

The heavy quark Lagrangian is now (r = |x|):

LpNRQCD
heavy quark = S†

(

i∂0 −
p2

M
− VS(r)

)

S +O(M−2) +

O†

(

iD0 −
p2

M
− VO(r)

)

O + gVA(r)xOE(X, t)S† + . . .
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pNRQCD, Matching

The potential for the octet part is repulsive.

The potential for the singlet is attractive, at LO:

V LO
S (r) = −

4

3

αs

r
.

In general it can be calculated from the Wilson loop:

VS(r) = lim
t→∞

i

t
ln〈W (t, r)〉

W (r , t) = P exp

[

−ig

∮

dzµAµ(z)

]

.

r0

t

At leading order, the diagrams contributing are:
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T = 0, pNRQCD Results

The singlet potential has been calculated

Perturbatively to high order in αs .

⇒ Computed till NNNLL (lnαs).

Nonperturbatively on the lattice.
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Effective theories for the finite temperature case

We built the same effective theory cascade, with the difference
that one has another additional scale:

the Debye mass mD

How does it compare to other scales?

If mD ∼ r−1
b the bound state is melted.

If mD ≪ r−1
b the bound state is not affected.

The interesting range is when M ≫ Mv & mD = gT > Mv2.

⇒ The reduction QCD→NRQCD is the same as M ≪ T .

⇒ NRQCD→pNRQCD changes, exchanged gluons are screened.

⇒ Potential calculated from the Euclidean Wilson loop with time
extend τ and the limit τ → it → i∞ is taken.
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Potential for heavy quarks

The potential at LO is obtained by summing:

Where the HTML resummed propagator is used for the gluons:

VS(r) = −
g2CF

4π

[

mD +
exp(−mDr)

r
+ iT φ(mDr)

]

+O(g4)

First term → 2×thermal mass correction for heavy quarks.

Second term → standard Debye-screened potential.
CF = (N2

c − 1)/2Nc;
mD = gT is the Debye mass

[Laine, Philipsen, Romatschke, Tassler (2007); Brambilla, Ghiglieri, Vairo and

Petreczky (2008); Beraudo, Blaizot, Ratti (2008)]
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Potential for heavy quarks

VS(r) = −
g2CF

4π

[

mD +
exp(−mDr)

r
+ iT φ(mDr)

]

+O(g4)

Third imaginary term → heavy quark damping:

φ(x) ≡ 2

∫ ∞

0

dz z

(z2 + 1)2

[

1−
sin(zx)

zx

]

φ(x) is strictly increasing from φ(0) = 0, φ(∞) = 1.
r →∞ contribution, 2×single quark damping (quark
absorption in the plasma)
Destructive interference between the dampings.
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Spectral function from the singlet wave function

From the potential:

→ solve the Schrödinger equation for S
→ compute the spectral function:

ρV (ω) =
(1−e−ω/T )

2

∫ ∞
−∞ dte iωtS(t, 0, 0)

[YB, Laine, Vepsäläinen (2008)]

This is in fact equivalent to resumming the following graphs:

q

q̄

Q

where heavy quarks lines have been replaced by Wilson lines.
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Numerical results for the spectral function
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Charmonium peak almost gone above Tc .

Bottomonium has only one resonance left.

No real bound state: Quarkonium is a resonance, which
broadens at high temperature.
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Hint from experiment?

Our result is certainly not in contradiction with the last results
form CMS: [arXiv:1012.5545, CMS-HIN-10-006]
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High energy limit ω ≫ M ≫ T perturbative expansion

We no longer have M ≫ δω but for large ω quarks will fly apart
very fast and do not have time to interact → perturbative
expansion possible
We define the quark current correlator:

CV
E (τ) =

∫

d
3x

〈

ˆ̄ψ (τ, x) γµψ̂ (τ, x) ˆ̄ψ (0, 0) γµψ̂ (0, 0)
〉

T
.

and its Fourier transform CV
E (ωb

n), which is calculated as

At LO:

= [Q − indep.] + 2Nc

∑

∫

{P}

(D − 2)Q2 − 4M2

(P2 + M2) ((P − Q)2 + M2)
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Computation at finite T

NLO: + + = . . .

Diagrams for CV
E (ωb

n) are computed at finite T

Gluon propagator in spectral representation

Carry out the sums

Check the absence of infrared divergences

Neglect e−M/T terms

Carry out the integrals

Spectral function ρV (ω) ← imaginary part of CV
E (ωb

n)

At LO:

ρV (ω) = −θ(ω − 2M)
Nc

4πω

√

ω2 − 4M2(ω2 + 2M2) tanh
( ω

4T

)

+4πNcωδ(ω)I2
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Results for the spectral function

Tree level

NLO T = 0

NLO T = 400 MeV
M = 2 GeV
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Gluing small and large energy results

(p)NRQCD/QCD normalization factor. . .
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Results for the Euclidean Correlator

From the spectral function:

G (τ) =

∫

dω ρ(ω)
cosh(ω(τ − β/2))

π sinh(ωβ/2)
. (1)

Example: Charmonium in pure glue M = 1.6, T = 1.5Tc , Nf = 0:
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NLO

LO

For NLO part I use α(ω).
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3. Quarkonium on the lattice

Lattice computations are difficult, Euclidean results have to be
analytically continued to Minkowski space-time.

Three kind of computations can be performed on the lattice:
1 The spectral function can be computed directly:

More precisely the Euclidean correlator is computed.
Has to be analytically continued.

⇒ Maximal entropy method, . . .

2 The heavy quark potential could be computed:

Proper potential needs an analytical continuation.
Is there an Euclidean definition? At least for the real part?
Can perturbation theory help to define that?

3 Reconstruct the potential out of the correlation function.
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Spectral function out of the lattice

Example of lattice results: Euclidean correlator → Analytical
continuation with MEM → Spectral function [Aarts, Allton, Oktay,

Peardon, Skullerud (2007)]:

Charmonium
T = 226MeV
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Note the second peak, not observed in perturbation theory.
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Many progress were done in the quenched case

[Ding, Francis, Kaczmarek, Karsch, Satz, Soeldner (2010)] Note the different
threshold behaviour than in perturbation theory.
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Comparison at the level of the Euclidean correlator

The analytic continuation is not well defined, we could compare
the Euclidean correlator:
Lattice data [Ding, Francis, Kaczmarek, Satz, Karsh, Söldner, 1011.0695]

Pure glue and charm quark

Lattice size: 1283 × 96, 1283 × 48, 1283 × 32, 1283 × 24

Corresponding to 0.73, 1.46, 2.2, 2.93Tc , (Tc = 270 MeV)

Small errorbars, < 10−3

Not extrapolated to continuum

I will still attempt a comparison to continuum ”perturbative”
results. . .
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Comparison at the level of the Euclidean correlator

First example (T = 0.7Tc )

nτ = 96 very large

T < Tc , Perturbative approach questionable

Leading Order
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Comparison at the level of the Euclidean correlator

Next to Leading Order (T = 0.7Tc )
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Comparison at the level of the Euclidean correlator

NLO + Schrödinger equation (T = 0.7Tc )
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Euclidean correlator, Mass dependence

The good agreement hide that I tuned the mass M to fit the
lattice. . .
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Τ T
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G�T3
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lattice

M ∼ 1.6 GeV expected as the charmonium mass is 3.1GeV
⇒ This gives a way to get M which is an unknown parameter in

the EFT framework!
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Euclidean correlator, Higher temperatures

At higher temperature, the agreement is not so good
(T = 1.5Tc , M = 1.6)
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Euclidean correlator, Higher temperatures

Changing the mass M does not help.
Changing the running of the coupling helps but not enough
(T = 1.5Tc , M = 1.6)
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Euclidean correlator, Higher temperatures

The transport peak is not known at NLO.
Fitting the data with an arbitrary peak gives good results
(T = 1.5Tc , M = 1.6)
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Euclidean correlator, Higher temperatures

M = 1.6, T = 2.2Tc T = 3Tc
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⇒ Next task: Compute the transport peak at NLO!
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Euclidean definition of the potential

Popular correlators on the lattice:
1 Singlet free energy in Coulomb gauge:

ΨC =
1

Nc
〈Tr[PrP

†
0]〉Coulomb

2 Traced Polyakov loop correlator

ΨT =
1

N2
c

〈Tr[Pr ]Tr[P†
0 ]〉

⇐ Gauge invariant. r0

β

τ

Other interesting correlators:
3 The singlet free energy in covariant gauge Ψξ.
4 Cyclic Wilson loop:

ΨW =
1

Nc
〈Tr[PrWβP†

0W
†
0 ]〉

⇐ Gauge invariant.
r0

β

τ
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Leading order perturbation theory

The traced Polyakov loop correlator FT ∼ α
2 e−2mDr

r2 is not the
potential, but the roughly the sum of the singlet and octet
potential.

I will not discuss it more here.

The free energy is gauge invariant (ΨP = 1
Nc
〈Tr[P ]〉),

FC = T ln

(

ΨC

|ΨP |2

)

= Fξ = −αCF
e−mDr

r
.

It equates the Wilson loop

ΨC = ΨW .

It is equal to the real part of the potential up to some
constant.

Do all these nice properties extend to NLO?



Introduction Theoretical description of quarkonium Quarkonium on the lattice Conclusion

Perturbation theory calculation at NLO

We calculated these different observables using finite T
perturbation theory at NLO: [YB, M. Laine and M. Vepsäläinen, 2009]

Difficulties:

UV divergences:
1
Nc
〈Tr[PrP

†
0 ]〉 depends only on g .

⇒ Charge renormalization alone should cancel UV divergences.

IR divergences:

Color electric modes at the scale gT .
⇒ Needs resummation: systematically done from EQCD.

Ψ = [ΨQCD −ΨEQCD ]unresummed + [ΨEQCD ]resummed

Color magnetic modes at the scale g 2T .
⇒ No prominent role here.
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Calculation: One Polyakov loop as example

[ΨP ]QCD =

[

1

Nc
〈Tr [Pr ]〉

]

QCD

=

+O(g6)

= 1−
g2CF

2T

∫

k

1

k2
−

g4CF

2

∫

k

2

k4

∑

∫

Q

· · ·+ . . .

The IR divergent 1/k4 and further logarithmic divergences in the
. . . require resummations.
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Soft mode resummation

The coefficient of the linear IR divergence is simply the Debye
mass:

[ΨP ]QCD = · · ·+
g4CF

2

∫

k

1

k4

∑

∫

Q

Nc(2− D)

(

−
1

Q2
+ 2

q2
0

Q4

)

= · · ·+
g2CFβ

2

∫

k

1

k4
m2

D

Can be removed by the usual resummation

−
g2CFβ

2

∫

k

1

k2
+

g2CFβ

2

∫

k

1

k4
m2

D = −
g2CFβ

2

∫

k

1

k2 + m2
D

=
g2CFmDβ

8π

Logarithmic divergences remain, a more systematic treatment of
the soft mode is needed
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EQCD resummation

The Lagrangian of EQCD reads

LE =
1

2
Tr [F̃ 2

ij ] + Tr [D̃i , Ã0]
2 + m2

DTr [Ã2
0] + . . . .

The Polyakov loop operator is represented as

Pr = [1Z0] + igÃ0βZ1 +
1

2
(igÃ0β)2 Z2 + . . .+ (g2F̃ijβ

2)2X4 + . . .

g3, g4 corrections to the Polyakov loop in EQCD:

[ΨP ]EQCD = −
g2CF

2T

∫

k

1

k2 + m2
D

−
g4CF

2

∫

k

2

(k2 + m2
D)2

∫

q

. . .

The divergences are regularized and reappear in the mD → 0 limit.
The expression ΨP = [[ΨP ]QCD − [ΨP ]EQCD ]mD→0 + [[Ψp]EQCD ] is
finite and contains the correct color electric physics.
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NLO results for the free energy in the Coulomb gauge

We obtain a well defined result for ΨC :

FC (r) = −
α(µ̄)CF exp(−mDr)

r

{

1 + α(µ̄)

[

11Nc

3

(

2 ln
µ̄eγE

4πT
+ 1

)

−
2Nf

3

(

2 ln
µ̄eγE

πT
− 1

)]}

− α(µ̄)2CFNc

{

−
exp(−2mDr)

8Tr2

1

12Tr2
+

Li2(e
−4πTr )

(2πr)2T
+ T exp(−mDr)

[

2− ln(2mDr)− γE

+e2mDrE1(2mDr)

]

+
1

πr

∫ ∞

1
dx

(

1

x2
−

1

2x4

)

ln
(

1− e−4πTrx
)

}

−α(µ̄)2CF Nf

[

1

2πr

∫ ∞

1
dx

(

1

x2
−

1

x4

)

ln
1 + e−2πTrx

1− e−2πTrx

]

+O(g5) .
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NLO results

For rT ≪ 1, ΨC reproduces the T = 0 potential

V (r) = −
g2CF

4πr
+

g4CF

(4π)2

∫

k

e ik·r

k2

[

2Nf

3

(

ln
µ̄2

k2
+

5

3

)

−
11Nc

3

(

ln
µ̄2

k2
+

31

33

)]

.

However there are some “problems”:

Polyakov loop correlator is not gauge invariant at O(g4).

⇒ The choice of the coulomb gauge seems arbitrary!

ΨC is finite after charge renormalization but not Ψξ nor ΨW .

⇒ Ideas to solve that problem welcome!

ΨC , Ψξ have a power law tail ∝ α2

T 2r2 .

→ Gauge artefact since there is a finite screening length in QGP.

The gauge invariant ΨW decreases like e−mDr .
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Free Energy as real part of the potential

The proper potential hasn’t been fully computed to NLO yet

We cannot make a decisive statement but.

The nice LO properties do not extend to NLO:

The free energy is gauge variant.

Contains artefacts, probably not present in the proper
potential.

If the Free energy matches the potential at T = 0 this do not
seems to extend to T 6= 0.

Perturbation theory breaks down at large r :
[ΨC ]NLO > [ΨC ]LO at r ≫ π

g2T
.

Probably not so important as large r behaviour is Debye
screened.
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Comparison with lattice
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Perturbative calculation shows a good convergence and fits lattice
data very well. [Lattice data from Kaczmarek, Karsch, Petreczky, Zantow, 2002]
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4. Conclusion: Free Energy

The singlet free energy in Coulomb gauge reproduce the
correct Tr → 0 behavior.

This observable might be quite close to the real part of the
potential.

However shows a non physical 1/r2 behavior at large distance.

⇒ Using the free energy probably overestimates the binding
energy.

Perturbation theory seems to converge well.

⇒ Computations for the quarkonium decay from perturbative
potential should be reliable.

Motivation to calculate the perturbative potential to O(g4).

Or to get the spectral function by analytical continuation from
the lattice euclidean correlator.
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Conclusion: Euclidean correlator

Preliminary work indicates a good match between lattice and
perturabtion theory.

Needed from pertrubation theory:

(N)NNLO T=0.
Transport peak at NLO.

Comparison to lattice allows to fix the unknown parameter M.

Might help for the analytical continuation: The divergent
τ = 0 part could be subtracted.

Dimuon spectrum from quarkonium decay now observable in
experiment. . .
We should make phenomenological pre(/post)dictions!
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